For #1 – 18: Simplify the expression. Write your answer using exponents (evaluate numerical bases with powers ≤ 4).

1)
$$x^2 \cdot x^5$$

2)
$$y^3 \cdot y^3 \cdot y$$

3)
$$(-5)^3 \cdot (-5)$$
 4) $(-8)^2$

4)
$$(-8)^2$$

5)
$$-8^2$$

6)
$$(2x)^3$$

7)
$$(2x^2y^3)^5$$

8)
$$(a^4)^8$$

9)
$$8^5 \cdot 8^2$$

10)
$$(-6)^6(-6)$$
 11) $2^4 \cdot 2^9 \cdot 2$

11)
$$2^4 \cdot 2^9 \cdot 2$$

12)
$$(7^4)^3$$

13)
$$y^9 \cdot y$$

14)
$$(y^4)^6$$

15)
$$-(5x)^2$$

16)
$$(-8m^4)^2 \cdot m^3$$

17)
$$(-3c^8)(2c^6d^8)$$

18)
$$(2y^5)^3(2y^2)^4$$

Multiple Choice:

19) Which expression is equivalent to $(-9)^6$?

a)
$$(-9)^2(-9)^3$$
 b) $(-9)(-9)^5$ c) $[(-9)^4]^2$ d) $[(-9)^3]^3$

b)
$$(-9)(-9)^5$$

c)
$$[(-9)^4]^2$$

d)
$$[(-9)^3]^3$$

20) Which expression is equivalent to $36x^{12}$?

a)
$$(6x^3)^4$$

b)
$$12x^4 \cdot 3x^3$$

a)
$$(6x^3)^4$$
 b) $12x^4 \cdot 3x^3$ c) $3x^3 \cdot (4x^3)^3$ d.) $(6x^5)^2 \cdot x^2$

d.)
$$(6x^5)^2 \cdot x^2$$

For #21 - 24, Find the missing exponent.

21)
$$x^4 \cdot x^? = x^5$$

22)
$$(y^8)^? = y^{16}$$

23)
$$(2z^?)^3 = 8z^{15}$$

24)
$$(3a^3)^2 \cdot 2a^3 = 18a^9$$

25) Solve for *y*:
$$\frac{y}{10} = \frac{7}{5}$$

26) BONUS: Simplify:
$$(-2x^3y^5)^3 \cdot (5xy^4)^2$$

For #1-16, Simplify the expression. Write your answer using exponents (evaluate numerical bases with powers ≤ 4).

1)
$$\frac{3^9}{3^5}$$

2)
$$\frac{y^{15}}{y^9}$$

3)
$$\frac{6^7 \cdot 6^4}{6^6}$$

4)
$$\frac{9^8}{9^6}$$

$$5) \ \frac{a^4}{a}$$

$$6) \left(\frac{-1}{x}\right)^3$$

7)
$$(x^3y)^4$$

8)
$$\left(\frac{2}{b^2}\right)^3$$

$$9) \left(\frac{y^5}{y^2}\right)^9$$

$$10) \ \frac{x^5 y^4}{x^2 y^8}$$

11)
$$\frac{(-4)^9}{(-4)^2}$$

$$12) \left(\frac{j}{k}\right)^{11}$$

13)
$$\left(\frac{-4}{x}\right)^2$$

14)
$$\left(\frac{7}{8}\right)^2$$

$$15) \left(\frac{a^8}{ba^3}\right)^5$$

$$16) \left(\frac{-5}{2}\right)^3$$

For #17 – 18: Find the missing exponent.

$$17) \; \frac{7^{?} \cdot 7^{2}}{7^{4}} = 7^{6}$$

$$18) \left(\frac{2c^3}{d^2}\right)^? = \frac{16c^{12}}{d^8}$$

Evaluate the expression for the given variable.

19)
$$x^3$$
 when $x = \frac{3}{4}$

For #20 - 21: Solve for x.

$$20) \ \frac{x+3}{4} = \frac{7x-1}{2}$$

$$21) \ \frac{10}{z-1} = \frac{12}{z+7}$$

For #22-29, simplify the expression. Write your answer using positive exponents (evaluate numerical bases with powers ≤ 4).

23)
$$5(7x^3)^0$$

24)
$$(-4)^0$$

25)
$$x^{-2}$$

26)
$$\frac{1}{6^{-2}}$$

27)
$$\frac{a^5}{a^{-7}}$$

28)
$$\frac{b^{-2}}{b^{11}}$$

$$29) \ \frac{a^3 y^3}{a^{10} y^{-5}}$$

30) Bonus:
$$\frac{4b^{-14}d^2}{2^3b^{-5}d^{-7}}$$

Algebra 1 Worksheet 6.1

For #1 - 13, solve each exponential equation.

1.
$$2^x = 16$$

2.
$$3^x = 9$$

3.
$$4^x = 64$$

4.
$$125 = 5^x$$

5.
$$32 = 2^x$$

6.
$$2^{2x+5} = 2^7$$

7.
$$6^{3x-4} = 36$$

8.
$$5^{3x-12} = 125$$

9.
$$\frac{1}{4}(4)^x = 16$$

10.
$$4\left(\frac{1}{2}\right)^x = \frac{1}{4}$$

11.
$$36^{2x-7} = 6^{x-5}$$

12.
$$36^{\frac{4}{3}\chi} = 6^8$$

13.
$$5^{3x-5} + 10 = 635$$

Simplify each expression using exponential rules (note: don't leave negative exponents in final answer). 14. $(-6m^5)^3 \cdot m^9$ 15. $6(8x^4)^0$

14.
$$(-6m^5)^3 \cdot m^5$$

15.
$$6(8x^4)^{0}$$

16.
$$\left(-\frac{5}{x^4}\right)^3$$

17.
$$\frac{a^4b^{-3}}{a^{-8}b^{12}}$$

Solve for the variable.

18.
$$\frac{x+3}{5} = \frac{x-2}{4}$$

19.
$$\frac{x+4}{6} = \frac{x-2}{3}$$

#20 & 21: BONUS. Show your work to receive credit

20.
$$8^{4x-5} + 5 = 37$$

21.
$$4^{x-8} \cdot 16 = 2^{4x-12}$$

For #1 - 5, classify each function as linear or exponential.

1.

X	-2	-1	0	1	2
y	1	2	4	8	16

2.

X	-2	-1	0	1	2
y	$\frac{1}{25}$	$\frac{1}{5}$	1	5	25

3.

х	-2	-1	0	1	2
у	16	19	22	25	28

4.
$$y = 3 \cdot (2)^x$$
 5. $y = -6x + 9$

For #6-9, identify whether the exponential function models growth or decay.

6.
$$f(x) = 2(4)^x$$

7.
$$y = \left(\frac{1}{3}\right)^x + 2$$

8.
$$y = (1.5)^x$$

9.
$$y = 3\left(\frac{2}{5}\right)^x$$

For #10 – 15, graph each exponential function. State the domain, range, and write the equation of the horizontal asymptote (H.A). A table is provided if you wish to use it.

10. $y = 3^x$

11. $f(x) = 5^{x-2}$

12. $y = \left(\frac{1}{2}\right)^{x+5} - 2$

Growth or Decay?

Domain: Range:

H.A:

Transformations:

y

Growth or Decay?

Domain: Range:

H.A:

Transformations:

X	y

Growth or Decay?

Domain: Range:

H.A:

Transformations:

X	y

13.
$$g(x) = 2^x + 1$$

Growth or Decay?

Domain:

Range:

H.A:

Transformations:

X	y

14.
$$y = \left(\frac{1}{3}\right)^x - 3$$

Growth or Decay?

Domain:

Range:

H.A:

Transformations:

X	y

15.
$$y = \left(\frac{1}{4}\right)^{x+5}$$

Growth or Decay?

Domain:

Range:

H.A:

Transformations:

X	y

For #16 – 17, solve for x. 16. $3^{2x+3} = 27$

16.
$$3^{2x+3} = 27$$

17.
$$8^x - 20 = 44$$

For #18 - 19, solve the system using substitution or elimination.

18.
$$\begin{cases} -3x - 8y = 20 \\ y = 19 + 5x \end{cases}$$

19.
$$\begin{cases} x - 3y = -3 \\ -7x + 8y = -5 \end{cases}$$

For #1 - 3, state all transformations of the function and whether it is growth or decay.

1)
$$y = 4\left(\frac{1}{2}\right)^x + 2$$

Transformations:

Growth or Decay?

2)
$$y = 2 \cdot 3^x + 3$$

Transformations:

Growth or Decay?

3)
$$y = \left(\frac{1}{4}\right)^{x-1} - 2$$

Transformations:

Growth or Decay?

For #4-9, Graph the following functions. Identify D, R, equation of horizontal asymptote (HA), transformations, and whether it is growth or decay.

4)
$$y = 3^{x-1} + 3$$

Transformations:

 $5) \quad y = -(0.5)^{x+3} - 1$

Transformations:

6) $y = 3 \cdot 2^{x-4} - 5$

Transformations:

Domain: Range:

H.A: Growth/Decay?

Domain:

Range:

H.A: Growth/Decay?

Domain:

Range:

H.A: Growth/Decay?

7) $y = \left(\frac{2}{3}\right)^{x+5} - 1$

Transformations:

8) $y = -\left(\frac{3}{4}\right)^{x-1} + 6$

Transformations:

9) $y = 4 \cdot 3^{x+1} - 2$

Transformations:

Domain: Range:

H.A: Growth/Decay?

Domain:

Range:

H.A:

Growth/Decay?

Domain:

Range:

H.A:

Growth/Decay?

10) How does the graph of $f(x) = 3^{x+2}$ compare to the graph of $g(x) = 3^x + 2$?

For #11 - 13, simplify using the rules of exponents.

11)
$$(x^4)^8$$

$$12) \ \frac{x^{-4}y^3z^{-6}}{x^8y^{-2}}$$

13)
$$x \cdot x^5 \cdot x^7$$

- **14**) Describe how $g(x) = 2^x$ changes after the transformation -3g(x) is applied.
- 15) Given f(x) and f(x h) as graphed, find the value of h.

For problems #1-6, determine whether the function is exponential. If it is exponential, write an equation for the function in the form $y = a_0 \cdot (b)^x$

1)	x	0	1	2	3
	ν	2	8	32	128

2) 20, 40, 80, ...

4)	х	0	1	2	3
	у	3	9	27	81

7) Write an equation for the exponential function below and find the 7th term.

х	0	1	2	3
у	32	16	8	4

8) Your parents offer you two options to receive an allowance for a 9-week period.

Option 1: You get paid \$25 per week

Option 2: You are paid \$1 the first week, \$2 the second week, \$4 the third week, and so on.

a) Does either option form a geometric sequence? Explain.

b) If you want to receive the most possible money in the 9 week period, which option should you choose? Explain.

For #9 - 11, write the recursive formula for each geometric sequence.

11)
$$\frac{1}{2}$$
, $\frac{3}{10}$, $\frac{9}{50}$, $\frac{27}{250}$, ...

For #12 – 13, simplify each expression using exponent rules.

$$12) \quad \left(-\frac{4}{x^5}\right)^8$$

$$13) \quad \frac{b^{12}c^{-4}}{b^{-3}c^{-2}}$$

For #14-15, Graph the following exponential functions including the horizontal asymptote (HA). Identify D, R, equation of asymptote, transformations, and growth/decay.

14) Graph $y = 4^{x-2} + 3$

Transformations:

Domain:

Range:

H.A:

Growth/Decay?

15) Graph $y = \left(\frac{1}{4}\right)^{x+3} - 2$

Transformations:

Domain: Range:

H.A:

Growth/Decay?

16) Describe how $g(x) = 5^x$ changes after the transformation g(x) + 4 is applied.

For #17-18, solve the system using elimination. Show all your work.

$$17) \begin{cases} 16x - 10y = 10 \\ -8x - 6y = 6 \end{cases}$$

18)
$$\begin{cases} -7x - 8y = 9 \\ -4x + 9y = -22 \end{cases}$$

Bonus: Solve for *x*. Show your work.

$$49^{3x+8} = 7^{x+6}$$

For #1-6, Given the exponential function, identify the initial amount a and the growth/decay factor b.

1.
$$y = 25(1.20)^x$$

2.
$$f(x) = 1250(.65)^x$$

3.
$$y = 1.17^x$$

Initial amount:

Initial amount:

Initial amount:

Growth/decay factor:

Growth/decay factor:

Growth/decay factor:

4.
$$y = 2(.83)^x$$

5.
$$f(t) = .678 \cdot (1.9)^t$$

6.
$$y = .97^x$$

Initial amount:

Initial amount:

Initial amount:

Growth/decay factor:

Growth/decay factor:

Growth/decay factor:

For #7-9, identify if the function is a growth or decay function.

7.
$$f(t) = -2.3 \cdot 5^t$$

8.
$$f(x) = .15(2)^{-x}$$

9.
$$y = -3\left(\frac{1}{6}\right)^{-x}$$

- **10.** You are given a gift of \$2,500 in stock on your 16th birthday. The value of the stock declines by 10% per year.
 - **a)** Write an exponential decay function that could be used to find the value of the stock t-years after your 16th birthday.
 - **b**) What will the value of the stock be on your 21st birthday? Round to the nearest cent. (use a calculator)
- 11. Samantha buys a house for \$125,000. The value of the house increases by 3% each year.
 - **a)** Write an exponential growth function to model the value of Samantha's house t-years after she bought it.
 - **b)** What is the value of Samantha's house 7 years after she purchased the house? Round to the nearest cent. (use a calculator)
- **12.** You deposit \$500 into a savings account that earns 6% interest each year and you do not make any deposits or withdrawals. How much will the account be worth in 25 years?

- 13. Jimmy buys a car for \$15,000. The value of the car depreciates by 7% each year.
 - a) Write an exponential decay function to model the value of Jimmy's car t-years after he bought it.
 - **b)** What is the value of Jimmy's car 4 years after he purchased the car? Round to the nearest cent. (use a calculator)

For #14 - 15, simplify each expression using the rules of exponents.

14.
$$(-3a^2b)^2 \cdot 6a^5b^4$$

15.
$$\left(\frac{3y^8}{x^2y^3}\right)^2$$

For #16 - 17, solve for the variable.

16.
$$3^{5x-11} + 9 = 90$$

17.
$$\frac{1}{3}(6)^x = 72$$

18. Graph:
$$y = 5^{x+3} + 3$$

Growth/Decay?

Domain:

Range:

H.A:

Transformations:

Algebra 1 Chapter 6 Practice Test

Name ______ Per ____

For #1-4, Graph the Exponential function.

1)
$$y = -3^{x+1} - 5$$

Domain: Range:

Transformations:

Growth/Decay?

2)
$$y = \left(\frac{1}{2}\right)^{x-3} + 2$$

Domain:

Range:

Transformations:

Growth/Decay?

3)
$$y = 4 \cdot 2^x + 1$$

Domain:

Range:

Transformations:

Growth/Decay?

4)
$$y = 2 \cdot (3)^{x-4}$$

Domain:

Range:

Transformations:

Growth/Decay?

For #5 - 8, Write an equation for the exponential functions.

X	0	1	2	3
y	$-\frac{1}{16}$	$-\frac{1}{4}$	-1	-4

X	0	1	2	3
y	25	5	1	$\frac{1}{5}$

8)
$$\frac{7}{2}$$
, 14, 56, ...

For #9 –	10: Sam buys	a car for \$55,0	00. The va	lue of the c	ar depreciates	at a rate of	12% per ye	ar. Use a
calculato	r when needed							

- 9) Write an exponential equation to model the situation.
- 10) What will the value of the car be 4 years after Sam purchases the car?

For #11 - 12: Dan buys a rare car at auction for \$35,000. The value of the car increases by 12.5% per year. Use a calculator when needed.

- 11) Write an exponential equation to model the situation.
- 12) What will the value of the car be 5 years after Dan purchases the car?

For #13 – 14:
$$g(x) = 900(.65)^x$$

- 13) Does the function g(x) represent exponential growth or decay?
- 14) What is the growth **factor** or decay **factor** for g(x)?

For #15 – 17:
$$f(x) = 657(1.42)^x$$

- 15) Does the function f(x) represent exponential growth or decay?
- 16) What is the growth **factor** or decay **factor** for f(x)?
- 17) What is the initial amount for f(x)?

For problems #18 - 23, solve the equation.

18)
$$4^x = 64$$

19)
$$9^x = 81$$

20)
$$7^{3x} = 7^{x+8}$$

$$21) \ \frac{1}{4}(4)^x = 4$$

22)
$$49^{3x} = 7^{4x+8}$$

23)
$$6^{3x-1} = 36^{3x-5}$$

For problems #24 - 27, simplify using the rules of exponents.

24)
$$(y^8)^5$$

25)
$$x^3 \cdot x^4 \cdot x^6$$

$$26) \ \frac{x^{-2}y^5z^{-2}}{x^8y^{-2}z^{-6}}$$

27)
$$(2x^5y^4)^3 \cdot 2xy$$