\qquad Per \qquad
For \#1-18: Simplify the expression. Write your answer using exponents (evaluate numerical bases with powers ≤ 4).

1) $x^{2} \cdot x^{5}$
2) $y^{3} \cdot y^{3} \cdot y$
3) $(-5)^{3} \cdot(-5)$
4) $(-8)^{2}$
5) -8^{2}
6) $(2 x)^{3}$
7) $\left(2 x^{2} y^{3}\right)^{5}$
8) $\left(a^{4}\right)^{8}$
9) $8^{5} \cdot 8^{2}$
10) $(-6)^{6}(-6)$
11) 2 $^{4} \cdot 2^{9} \cdot 2$
12) $\left(7^{4}\right)^{3}$
13) $y^{9} \cdot y$
14) $\left(y^{4}\right)^{6}$
15) $-(5 x)^{2}$
16) $\left(-8 m^{4}\right)^{2} \cdot m^{3}$
17) $\left(-3 c^{8}\right)\left(2 c^{6} d^{8}\right)$
18) $\left(2 y^{5}\right)^{3}\left(2 y^{2}\right)^{4}$

Multiple Choice:

19) Which expression is equivalent to $(-9)^{6}$?
a) $(-9)^{2}(-9)^{3}$
b) $(-9)(-9)^{5}$
c) $\left[(-9)^{4}\right]^{2}$
d) $\left[(-9)^{3}\right]^{3}$
20) Which expression is equivalent to $36 x^{12}$?
a) $\left(6 x^{3}\right)^{4}$
b) $12 x^{4} \cdot 3 x^{3}$
c) $3 x^{3} \cdot\left(4 x^{3}\right)^{3}$
d.) $\left(6 x^{5}\right)^{2} \cdot x^{2}$

For \#21-24, Find the missing exponent.
21) $x^{4} \cdot x^{?}=x^{5}$
22) $\left(y^{8}\right)^{?}=y^{16}$
23) $\left(2 z^{?}\right)^{3}=8 z^{15}$
24) $\left(3 a^{3}\right)^{?} \cdot 2 a^{3}=18 a^{9}$
25) Solve for $y: \frac{y}{10}=\frac{7}{5}$
26) BONUS: Simplify: $\left(-2 x^{3} y^{5}\right)^{3} \cdot\left(5 x y^{4}\right)^{2}$
\qquad Per \qquad
For \#1-16, Simplify the expression. Write your answer using exponents (evaluate numerical bases with powers ≤ 4).

1) $\frac{3^{9}}{3^{5}}$
2) $\frac{y^{15}}{y^{9}}$
3) $\frac{6^{7} \cdot 6^{4}}{6^{6}}$
4) $\frac{9^{8}}{9^{6}}$
5) $\frac{a^{4}}{a}$
6) $\left(\frac{-1}{x}\right)^{3}$
7) $\left(x^{3} y\right)^{4}$
8) $\left(\frac{2}{b^{2}}\right)^{3}$
9) $\left(\frac{y^{5}}{y^{2}}\right)^{9}$
10) $\frac{x^{5} y^{4}}{x^{2} y^{8}}$
11) $\frac{(-4)^{9}}{(-4)^{2}}$
12) $\left(\frac{j}{k}\right)^{11}$
13) $\left(\frac{-4}{x}\right)^{2}$
14) $\left(\frac{7}{8}\right)^{2}$
15) $\left(\frac{a^{8}}{b a^{3}}\right)^{5}$
16) $\left(\frac{-5}{2}\right)^{3}$

For \#17-18: Find the missing exponent.
17) $\frac{7^{?} \cdot 7^{2}}{7^{4}}=7^{6}$
18) $\left(\frac{2 c^{3}}{d^{2}}\right)^{?}=\frac{16 c^{12}}{d^{8}}$

Evaluate the expression for the given variable.
19) x^{3} when $x=\frac{3}{4}$

For \#20-21: Solve for x.
20) $\frac{x+3}{4}=\frac{7 x-1}{2}$
21) $\frac{10}{z-1}=\frac{12}{z+7}$

For \#22-29, simplify the expression. Write your answer using positive exponents (evaluate numerical bases with powers ≤ 4).
22) 7^{-3}
23) $5\left(7 x^{3}\right)^{0}$
24) $(-4)^{0}$
25) x^{-2}
26) $\frac{1}{6^{-2}}$
27) $\frac{a^{5}}{a^{-7}}$
28) $\frac{b^{-2}}{b^{11}}$
29) $\frac{a^{3} y^{3}}{a^{10} y^{-5}}$
30) Bonus: $\frac{4 b^{-14} d^{2}}{2^{3} b^{-5} d^{-7}}$
\qquad Per \qquad
For \#1 - 13, solve each exponential equation.

1. $2^{x}=16$
2. $3^{x}=9$
3. $4^{x}=64$
4. $125=5^{x}$
5. $32=2^{x}$
6. $2^{2 x+5}=2^{7}$
7. $6^{3 x-4}=36$
8. $5^{3 x-12}=125$
9. $\frac{1}{4}(4)^{x}=16$
10. $4\left(\frac{1}{2}\right)^{x}=\frac{1}{4}$
11. $36^{2 x-7}=6^{x-5}$
12. $36^{\frac{4}{3} x}=6^{8}$
13. $5^{3 x-5}+10=635$

Simplify each expression using exponential rules (note: don't leave negative exponents in final answer).
14. $\left(-6 m^{5}\right)^{3} \cdot m^{9}$
15. $6\left(8 x^{4}\right)^{0}$
16. $\left(-\frac{5}{x^{4}}\right)^{3}$
17. $\frac{a^{4} b^{-3}}{a^{-8} b^{12}}$

Solve for the variable.
18. $\frac{x+3}{5}=\frac{x-2}{4}$
\#20 \& 21: BONUS. Show your work to receive credit
20. $8^{4 x-5}+5=37$
19. $\frac{x+4}{6}=\frac{x-2}{3}$
21. $4^{x-8} \cdot 16=2^{4 x-12}$
\qquad Per \qquad
For \#1 - 5, classify each function as linear or exponential.
1.

\mathbf{x}	-2	-1	0	1	2
\mathbf{y}	1	2	4	8	16

2.

\mathbf{x}	-2	-1	0	1	2
\mathbf{y}	$\frac{1}{25}$	$\frac{1}{5}$	1	5	25

3. | x | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 16 | 19 | 22 | 25 | 28 |
4. $y=3 \cdot(2)^{x}$
5. $y=-6 x+9$

For \#6 -9, identify whether the exponential function models growth or decay.
6. $f(x)=2(4)^{x}$
7. $y=\left(\frac{1}{3}\right)^{x}+2$
8. $y=(1.5)^{x}$
9. $y=3\left(\frac{2}{5}\right)^{x}$

For \#10-15, graph each exponential function. State the domain, range, and write the equation of the horizontal asymptote (H.A). A table is provided if you wish to use it.
10. $y=3^{x}$

Growth or Decay?
Domain: Range:
H.A:

Transformations:
11. $f(x)=5^{x-2}$

Growth or Decay?
Domain: Range:
H.A:

Transformations:

\mathbf{x}	\mathbf{y}

12. $y=\left(\frac{1}{2}\right)^{x+5}-2$

Growth or Decay?
Domain: Range:
H.A:

Transformations:

\mathbf{x}	\mathbf{y}

13. $g(x)=2^{x}+1$

Growth or Decay?
Domain:
Range:
H.A:

Transformations:

\mathbf{x}	\mathbf{y}

For \#16-17, solve for x .
16. $3^{2 x+3}=27$
17. $8^{x}-20=44$

For \#18-19, solve the system using substitution or elimination.
18. $\left\{\begin{array}{c}-3 x-8 y=20 \\ y=19+5 x\end{array}\right.$
19. $\left\{\begin{array}{c}x-3 y=-3 \\ -7 x+8 y=-5\end{array}\right.$
\qquad Per \qquad
For \#1-3, state all transformations of the function and whether it is growth or decay.

1) $y=4\left(\frac{1}{2}\right)^{x}+2$
2) $y=2 \cdot 3^{x}+3$
3) $y=\left(\frac{1}{4}\right)^{x-1}-2$

Transformations:
Growth or Decay?

Transformations:
Growth or Decay?

Transformations:
Growth or Decay?

For \#4-9, Graph the following functions. Identify D, R, equation of horizontal asymptote (HA), transformations, and whether it is growth or decay.
4) $y=3^{x-1}+3$

Transformations:
$\begin{array}{ll}\text { Domain: } & \text { Range: } \\ \text { H.A: } & \text { Growth/Decay? }\end{array}$
7) $y=\left(\frac{2}{3}\right)^{x+5}-1$

Transformations:
$\begin{array}{ll}\text { Domain: } & \text { Range: } \\ \text { H.A: } & \text { Growth/Decay? }\end{array}$
5) $y=-(0.5)^{x+3}-1$

Transformations:

Domain: Range:
H.A:

Growth/Decay?
6) $y=3 \cdot 2^{x-4}-5$

Transformations:

Domain:	Range:
H.A:	Growth/Decay?

9) $y=4 \cdot 3^{x+1}-2$

Transformations:

Domain:
Range:
H.A:
10) How does the graph of $f(x)=3^{x+2}$ compare to the graph of $g(x)=3^{x}+2$?

For \#11-13, simplify using the rules of exponents.
11) $\left(x^{4}\right)^{8}$
12) $\frac{x^{-4} y^{3} z^{-6}}{x^{8} y^{-2}}$
13) $x \cdot x^{5} \cdot x^{7}$
14) Describe how $g(x)=2^{x}$ changes after the transformation $-3 g(x)$ is applied.
15) Given $f(x)$ and $f(x-h)$ as graphed, find the value of h.

\qquad Per \qquad
For problems \#1-6, determine whether the function is exponential. If it is exponential, write an equation for the function in the form $y=a_{0} \cdot(b)^{x}$
1)

x	0	1	2	3
y	2	8	32	128

3) $1,6,11, \ldots$
4)

x	0	1	2	3
y	3	9	27	81

5)

x	0	1	2	3
y	100	50	25	12.5

6) $-6,-12,-24, \ldots$
7) Write an equation for the exponential function below and find the $7^{\text {th }}$ term.

x	0	1	2	3
y	32	16	8	4

8) Your parents offer you two options to receive an allowance for a 9 -week period.

Option 1: You get paid $\$ 25$ per week
Option 2: You are paid $\$ 1$ the first week, $\$ 2$ the second week, $\$ 4$ the third week, and so on.
a) Does either option form a geometric sequence? Explain.
b) If you want to receive the most possible money in the 9 week period, which option should you choose? Explain.

For \#9-11, write the recursive formula for each geometric sequence.
9) $6,18,54,162, \ldots$
10) $4,8,16,32,64, \ldots$
11) $\frac{1}{2}, \frac{3}{10}, \frac{9}{50}, \frac{27}{250}, \ldots$

For \#12-13, simplify each expression using exponent rules.
12) $\left(-\frac{4}{x^{5}}\right)^{8}$
13) $\frac{b^{12} c^{-4}}{b^{-3} c^{-2}}$

For \#14-15, Graph the following exponential functions including the horizontal asymptote (HA). Identify D, R, equation of asymptote, transformations, and growth/decay.
14) Graph $y=4^{x-2}+3$

Transformations:

Domain:
Range:
H.A:

Growth/Decay?
15) Graph $y=\left(\frac{1}{4}\right)^{x+3}-2$

Transformations:

Domain:
Range:
H.A:

Growth/Decay?
16) Describe how $g(x)=5^{x}$ changes after the transformation $g(x)+4$ is applied.

For \#17-18, solve the system using elimination. Show all your work.
17) $\left\{\begin{aligned} 16 x-10 y & =10 \\ -8 x-6 y & =6\end{aligned}\right.$
18) $\left\{\begin{array}{c}-7 x-8 y=9 \\ -4 x+9 y=-22\end{array}\right.$

Bonus: Solve for x. Show your work.

$$
49^{3 x+8}=7^{x+6}
$$

\qquad Per \qquad
For \#1-6, Given the exponential function, identify the initial amount a and the growth/decay factor b.

1. $y=25(1.20)^{x}$
2. $f(x)=1250(.65)^{x}$
3. $y=1.17^{x}$

Initial amount:
Growth/decay factor:
4. $y=2(.83)^{x}$

Initial amount:
Growth/decay factor:

Initial amount:
Growth/decay factor:
5. $f(t)=.678 \cdot(1.9)^{t}$

Initial amount:
Growth/decay factor:

Initial amount:
Growth/decay factor:
6. $y=.97^{x}$

Initial amount:
Growth/decay factor:

For \#7-9, identify if the function is a growth or decay function.
7. $f(t)=-2.3 \cdot 5^{t}$
8. $f(x)=.15(2)^{-x}$
9. $y=-3\left(\frac{1}{6}\right)^{-x}$
10. You are given a gift of $\$ 2,500$ in stock on your $16^{\text {th }}$ birthday. The value of the stock declines by 10% per year.
a) Write an exponential decay function that could be used to find the value of the stock t-years after your $16^{\text {th }}$ birthday.
b) What will the value of the stock be on your $21^{\text {st }}$ birthday? Round to the nearest cent. (use a calculator)
11. Samantha buys a house for $\$ 125,000$. The value of the house increases by 3% each year.
a) Write an exponential growth function to model the value of Samantha's house t-years after she bought it.
b) What is the value of Samantha's house 7 years after she purchased the house? Round to the nearest cent. (use a calculator)
12. You deposit $\$ 500$ into a savings account that earns 6% interest each year and you do not make any deposits or withdrawals. How much will the account be worth in 25 years?
13. Jimmy buys a car for $\$ 15,000$. The value of the car depreciates by 7% each year.
a) Write an exponential decay function to model the value of Jimmy's car t-years after he bought it.
b) What is the value of Jimmy's car 4 years after he purchased the car? Round to the nearest cent. (use a calculator)

For \#14-15, simplify each expression using the rules of exponents.
14. $\left(-3 a^{2} b\right)^{2} \cdot 6 a^{5} b^{4}$
15. $\left(\frac{3 y^{8}}{x^{2} y^{3}}\right)^{2}$

For \#16-17, solve for the variable.
16. $3^{5 x-11}+9=90$
17. $\frac{1}{3}(6)^{x}=72$
18. Graph: $y=5^{x+3}+3$

Growth/Decay?
Domain:
Range:
H.A:

Transformations:

Algebra 1 Chapter 6 Practice Test

Name \qquad Per \qquad
For \#1-4, Graph the Exponential function.

1) $y=-3^{x+1}-5$

Domain:
Range:
Transformations:
Growth/Decay?

2) $y=\left(\frac{1}{2}\right)^{x-3}+2$

Domain:
Range:
Transformations:
Growth/Decay?

3) $y=4 \cdot 2^{x}+1$

Domain:
Range:

Transformations:

Growth/Decay?

4) $y=2 \cdot(3)^{x-4}$

Domain:
Range:
Transformations:
Growth/Decay?

For \#5-8, Write an equation for the exponential functions.
5)

\mathbf{x}	0	1	2	3
\mathbf{y}	$-\frac{1}{16}$	$-\frac{1}{4}$	-1	-4

6) $3,6,12,24, \ldots$

\mathbf{x}	0	1	2	3
\mathbf{y}	25	5	1	$\frac{1}{5}$

8) $\frac{7}{2}, 14,56, \ldots$
9)

For \#9 - 10: Sam buys a car for $\$ 55,000$. The value of the car depreciates at a rate of 12% per year. Use a calculator when needed.
9) Write an exponential equation to model the situation.
10) What will the value of the car be 4 years after Sam purchases the car?

For \#11-12: Dan buys a rare car at auction for $\$ 35,000$. The value of the car increases by 12.5% per year. Use a calculator when needed.
11) Write an exponential equation to model the situation.
12) What will the value of the car be 5 years after Dan purchases the car?

For \#13-14: $\boldsymbol{g}(\boldsymbol{x})=900(.65)^{x}$
13) Does the function $g(x)$ represent exponential growth or decay?
14) What is the growth factor or decay factor for $g(x)$?

For \#15-17: $f(x)=657(1.42)^{x}$
15) Does the function $f(x)$ represent exponential growth or decay?
16) What is the growth factor or decay factor for $f(x)$?
17) What is the initial amount for $f(x)$?

For problems \#18-23, solve the equation.
18) $4^{x}=64$
19) $9^{x}=81$
20) $7^{3 x}=7^{x+8}$
21) $\frac{1}{4}(4)^{x}=4$
22) $49^{3 x}=7^{4 x+8}$
23) $6^{3 x-1}=36^{3 x-5}$

For problems \#24-27, simplify using the rules of exponents.
24) $\left(y^{8}\right)^{5}$
25) $x^{3} \cdot x^{4} \cdot x^{6}$
26) $\frac{x^{-2} y^{5} z^{-2}}{x^{8} y^{-2} z^{-6}}$
27) $\left(2 x^{5} y^{4}\right)^{3} \cdot 2 x y$

